If it's not what You are looking for type in the equation solver your own equation and let us solve it.
384=16t^2=27t
We move all terms to the left:
384-(16t^2)=0
a = -16; b = 0; c = +384;
Δ = b2-4ac
Δ = 02-4·(-16)·384
Δ = 24576
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{24576}=\sqrt{4096*6}=\sqrt{4096}*\sqrt{6}=64\sqrt{6}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-64\sqrt{6}}{2*-16}=\frac{0-64\sqrt{6}}{-32} =-\frac{64\sqrt{6}}{-32} =-\frac{2\sqrt{6}}{-1} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+64\sqrt{6}}{2*-16}=\frac{0+64\sqrt{6}}{-32} =\frac{64\sqrt{6}}{-32} =\frac{2\sqrt{6}}{-1} $
| A=3.14x7 | | 15x-3x(3x+4)=6 | | -2=-8v+5(v+2) | | 5–x=-4 | | x=-7+17/20 | | -4(4y+-10)=40 | | 3+5n-4n=-2 | | -157=20x | | 3=2x=-7 | | 40/n=30/24 | | 5(x-5)=4(x+) | | -1/4(8x+20)=-7 | | 9x+5=4x+8+x | | -8=-k+2k | | 23-8x=7 | | 5-7c=-9 | | X2=x5 | | 12x^2+120x=0 | | 11m-(8+6m)=22 | | 7b+7(3-7b)=2b-9(b+8) | | 3n-15=6n-30 | | -2(z+4=-48 | | 8x+24-2x=9 | | 5x-3+13x+4=17 | | 2(4x×11)=10 | | 6(6-6n)=n+36 | | -13m=- | | 7x2−42x+63=0 | | 8x-16=8x | | 0.6=1.5x | | 5x-3+17=13x+4 | | ((3-x)/x)=2 |